$\qquad$

1) Find the product below. (15 points)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 2 \\
3 & 7 & 1 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & -2 \\
0 & 2 & 5 \\
-1 & 0 & 3
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1-2 & 4 & -2+6 \\
3-1 & 12+14 & -6+35+3 \\
-2-1 & -8 & 4+3
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 4 & 4 \\
2 & 26 & 32 \\
-3 & -8 & 7
\end{array}\right]}
\end{aligned}
$$

2) Row reduce the matrix below to reduced echelon form. (15 points)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & 2 & 3 \\
3 & 8 & 11 \\
4 & 10 & 14
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & 2 & 3 \\
3 & 8 & 11 \\
4 & 10 & 14
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
3 & 8 & 11 \\
4 & 10 & 14
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
3 & 8 & 11 \\
4 & 10 & 14
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 2 & 2 \\
4 & 10 & 14
\end{array}\right] \sim_{R}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right]} \\
& R_{1} \rightarrow \frac{1}{2} R_{2} \quad R_{2} \rightarrow R_{2}-R_{1} \quad R_{3} \rightarrow R_{3}-3 R_{1} \quad R_{4} \rightarrow R_{4}-4 R_{1} \\
& \sim_{R}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 2 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& R_{2} \leftrightarrow R_{4} \quad R_{2} \rightarrow \frac{1}{2} R_{2} \quad R_{3} \rightarrow R_{3}-2 R_{2} R_{1} \rightarrow R_{1}-2 R_{2}
\end{aligned}
$$

3 ) Find the null space of the matrix below. (15 points)

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 3 \\
1 & 3 & 0 & 5 \\
0 & 0 & 1 & -4
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -4
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -4
\end{array}\right]
$$

$x_{4} \in \mathbb{R}$
$x_{3}=4 x_{4}$
$x_{2}=-2 x_{4}$
$x_{1}=x_{4}$

$$
\operatorname{span}\left(\left\{\left[\begin{array}{c}
1 \\
-2 \\
4 \\
1
\end{array}\right]\right\}\right)
$$

4) Express the span below in set builder notation. Do not include redundant vectors. (10 points)

$\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] x_{1}+\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right] x_{2}+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] x_{3}: x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$
5) Answer the following questions. (3 points each)
A) Let $A$ be a $4 \times 4$ matrix which, when row reduced, has 4 pivots. How many solutions can the equation $A \vec{x}=\overrightarrow{0}$ have?

1
B) Let $A$ be a $4 \times 4$ matrix which, when row reduced, has 3 pivots. How many solutions can the


0 or $\infty$
C) Let $A \vec{x}=\overrightarrow{0}$ be a system of 5 equations in 3 variables. If the row space of $A$ is $\mathbb{R}^{3}$, how many solutions can the system have?

1
D) Let $A$ be a $6 \times 7$ matrix for which $A \vec{x}=\vec{b}$ with $\vec{b} \neq \overrightarrow{0}$ has no solutions. When row reduced, what is the maximum number of pivots $A$ can have?

5
E) Let $A$ be a $3 \times 3$ matrix that is a product of elementary matrices. Does $A$ have an inverse?

Yes
6) Multiply the matrices below. (6 points)

$$
\begin{gathered}
\\
\\
{\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
4 & 0 & 0 & 0 & 1 \\
5 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
2 & 3 & 4 & 5 & 3 \\
6 & 7 & 8 & 9 & 3 \\
1 & 2 & 3 & 4 & 4 \\
5 & 6 & 7 & 8 & 5
\end{array}\right]} \\
{\left[\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
4 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
8 & 0 & 4 & 0 & 0
\end{array}\right]+\left[\begin{array}{lllll}
2 & 3 & 4 & 5 & 3 \\
6 & 7 & 8 & 9 & 3 \\
1 & 2 & 3 & 4 & 4 \\
5 & 6 & 7 & 8 & 5
\end{array}\right]\right.} \\
{[10}
\end{gathered} 0
$$

By partitioning the left matrix, most of the arithmetic is avoided.
7) Multiply the matrices below (6 points)

$$
\begin{gathered}
{\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
2 & 3 & 4 & 5 & 3 \\
6 & 7 & 8 & 9 & 3 \\
1 & 2 & 3 & 4 & 4 \\
5 & 6 & 7 & 8 & 5
\end{array}\right]} \\
\end{gathered}\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
4 & 3 & 5 & 5 & 3 \\
6 & 7 & 8 & 9 & 3 \\
2 & 4 & 6 & 8 & 8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad .
$$

By using the fact that the left matrix is the product of three* elementary matrices, most of the arithmetic is avoided.
8) Find the angle between the two vectors below. You may use the unit circle provided here. (6 points)

$$
\vec{v}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right]
$$

$$
\left\|\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]\right\|\left\|\left\|\left[\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right]\right\| \cos (\theta)=\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right]\right.
$$

$$
\begin{aligned}
& \sqrt{1+4+4+1} \sqrt{1+9} \cos (\theta)=-1+6 \\
& \sqrt{10} \sqrt{10} \cos (\theta)=5 \\
& 10 \cos (\theta)=5 \\
& \cos (\theta)=\frac{1}{2} \\
& \theta=\frac{\pi}{3}=60^{\circ}
\end{aligned}
$$


9) Solve the system of equations below. (6 points)

$$
\begin{array}{r}
x_{1}-x_{3}=5 \\
x_{2}+2 x_{3}=4
\end{array}
$$

$x_{3} \in \mathbb{R}$
$x_{1}=5+x_{3}$
$x_{2}=4-2 x_{3}$
$\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right] x_{3}+\left[\begin{array}{l}5 \\ 4 \\ 0\end{array}\right]: x_{3} \in \mathbb{R}\right\}$
10) How many solutions does matrix equation below have? (6 points)

$$
\left[\begin{array}{cccc}
1 & 4 & 3 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

$\infty$

