1) Find the product below. (15 points)

$$\begin{bmatrix} 1 & 0 & 2 \\ 3 & 7 & 1 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & -2 \\ 0 & 2 & 5 \\ -1 & 0 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 1-2 & 4 & -2+6 \\ 3-1 & 12+14 & -6+35+3 \\ -2-1 & -8 & 4+3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & 4 \\ 2 & 26 & 32 \\ -3 & -8 & 7 \end{bmatrix}$$

2) Row reduce the matrix below to reduced echelon form. (15 points)

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 8 & 11 \\ 4 & 10 & 14 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 8 & 11 \\ 4 & 10 & 14 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 3 & 8 & 11 \\ 4 & 10 & 14 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 3 & 8 & 11 \\ 4 & 10 & 14 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 3 & 8 & 11 \\ 4 & 10 & 14 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 2 \\ 4 & 10 & 14 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 2 \\ 4 & 10 & 14 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

$$R_{1} \rightarrow \frac{1}{2}R_{2} \qquad R_{2} \rightarrow R_{2} - R_{1} \qquad R_{3} \rightarrow R_{3} - 3R_{1} \qquad R_{4} \rightarrow R_{4} - 4R_{1}$$

$$\sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R_{2} \leftrightarrow R_{4} \qquad R_{2} \rightarrow \frac{1}{2}R_{2} \qquad R_{3} \rightarrow R_{3} - 2R_{2}R_{1} \rightarrow R_{1} - 2R_{2}$$

3) Find the null space of the matrix below. (15 points)

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & -4 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -4 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -4 \end{bmatrix}$$

 $x_4 \in \mathbb{R}$ $x_3 = 4x_4$ $x_2 = -2x_4$ $x_1 = x_4$

$$span\left(\left\{ \begin{bmatrix} 1\\ -2\\ 4\\ 1 \end{bmatrix} \right\} \right)$$

4) Express the span below in set builder notation. Do not include redundant vectors. (10 points)

$$span\left(\left\{\begin{bmatrix}1\\1\\0\end{bmatrix},\begin{bmatrix}2\\3\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}3\\5\\-4\end{bmatrix}\right\}\right)$$

 $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} x_1 + \begin{bmatrix} 2\\3\\0 \end{bmatrix} x_2 + \begin{bmatrix} 0\\0\\1 \end{bmatrix} x_3 : x_1, x_2, x_3 \in \mathbb{R} \right\}$

- 5) Answer the following questions. (3 points each)
 - A) Let *A* be a 4 × 4 matrix which, when row reduced, has 4 pivots. How many solutions can the equation $A\vec{x} = \vec{0}$ have?

1

B) Let A be a 4×4 matrix which, when row reduced, has 3 pivots. How many solutions can the

equation
$$A\vec{x} = \overline{\begin{bmatrix} 0\\0\\0\\2 \end{bmatrix}}$$
 have?

0 or ∞

C) Let $A\vec{x} = \vec{0}$ be a system of 5 equations in 3 variables. If the row space of A is \mathbb{R}^3 , how many solutions can the system have?

1

D) Let *A* be a 6×7 matrix for which $A\vec{x} = \vec{b}$ with $\vec{b} \neq \vec{0}$ has no solutions. When row reduced, what is the maximum number of pivots *A* can have?

5

E) Let A be a 3×3 matrix that is a product of elementary matrices. Does A have an inverse?

Yes

6) Multiply the matrices below. (6 points)

							0 1 2 (0 (<u>4 (</u> 5 (L) :) () (0 1 0 0 0	0 0 1 0 0	0 0 1 0	2 6 1 5	0 3 7 2 6	1 4 3 7	0 5 9 4 8	0 3 4 5	_						
[0 4 0 8 [10]	0 0 0 0	0 2 0 4 5	0 0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \\0 \end{bmatrix} + $	2 6 1 5 - [0	3 7 2 6 0	4 8 3 7 0	5 9 4 8 0	3 ⁻ 3 4 5. 0)]]]=	=	2 10 1 13 [10	3 7 2 6) 2 5 0	4 10 3 11 5	5 9 4 8 0	3 3 4 5 0]	$=\begin{bmatrix} 2\\10\\1\\13\\10\end{bmatrix}$	3 7 2 6 6 0	8 7 2 5	4 10 3 11 5	5 9 4 8 0	3 3 4 5 0

By partitioning the left matrix, most of the arithmetic is avoided.

7) Multiply the matrices below (6 points)

$\begin{bmatrix} 1\\1\\0\\0\\0\\0\end{bmatrix}$	0 1 0 0 0	0	0 0 0 2 0		2	0 3 7 2 6	1 4	0 5	0 3
0	1 0 0 0	1	0	0	6	7	8	9	3
0	0	0	2	0	1	2	3	4	4
LO	0	0	0	011	-5	6	7	8	51
		2 4 6	0 3 7 4 0	1 5 8	0 5 9	0- 3 3 8			
		2	4	6	8	8			
		L0	.0	0	0	0-	I		

By using the fact that the left matrix is the product of three* elementary matrices, most of the arithmetic is avoided.

8) Find the angle between the two vectors below. You may use the unit circle provided here. (6 points)

$$\vec{v} = \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \vec{w} = \begin{bmatrix} -1\\3\\0\\0 \end{bmatrix}$$

$$\left\| \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix} \right\| \left\| \begin{bmatrix} -1\\3\\0\\0 \end{bmatrix} \right\| \cos(\theta) = \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} -1\\3\\0\\0 \end{bmatrix}$$

$$\sqrt{1+4+4+1}\sqrt{1+9}\cos(\theta) = -1+6$$
$$\sqrt{10}\sqrt{10}\cos(\theta) = 5$$
$$10\cos(\theta) = 5$$
$$\cos(\theta) = \frac{1}{2}$$
$$\theta = \frac{\pi}{3} = 60^{0}$$

9) Solve the system of equations below. (6 points)

$$x_1 - x_3 = 5 \\
 x_2 + 2x_3 = 4$$

$$x_{3} \in \mathbb{R}$$

$$x_{1} = 5 + x_{3}$$

$$x_{2} = 4 - 2x_{3}$$

$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} x_{3} + \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} : x_{3} \in \mathbb{R} \right\}$$

10) How many solutions does matrix equation below have? (6 points)

$$\begin{bmatrix} 1 & 4 & 3 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

 ∞